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Products of Prime Powers 
in Binary Recurrence Sequences 

Part II: The Elliptic Case, with an Application 
to a Mixed Quadratic-Exponential Equation 

By B. M. M. de Weger 

Abstract. In Part I the diophantine equation Gn = wp1 ... p"t was studied, where { 
G,, 

} 
is a linear binary recurrence sequence with positive discriminant. In this second part we 
extend this to negative discriminants. We use the p-adic and complex Gelfond-Baker theory 
to find explicit upper bounds for the solutions of the equation. We give algorithms to reduce 
those bounds, based on diophantine approximation techniques. Thus we have a method to 
solve the equation completely for arbitrary values of the parameters. We give an application to 
a quadratic-exponential equation. 

6. Introduction and Preliminaries. 
6A. Introduction. It is assumed that the reader is familiar with Part I of this paper 

(Petho and de Weger [4]). We adopt notations and assumptions from Part I without 
further reference. 

In Part I we studied Eq. (1.1): 

G= wpI2 ... Mt" 

for A > 0. The p-adic Gelfond-Baker theory, together with a trivial observation on 
the exponential growth of IGnl, provided us with upper bounds for the solutions. In 
the case A < 0, which is our present topic, the situation is essentially more com- 
plicated. The p-adic behavior of Gn does not depend on the sign of the discriminant. 
But in the case A < 0, the growth of IGnI is not as nice as in the case A > 0. 
However, information on its growth can be obtained from the complex Gelfond-Baker 
theory. The fact that Eq. (1.1) has only finitely many solutions was shown by Mahler 
[3]. 

Section 7 is devoted to the complex arguments. In it we solve the diophantine 
inequality IGnI < v for a fixed v. An upper bound for n is given that has particularly 
good dependence on v. We present algorithms to reduce this upper bound, so that 
the inequality can be solved completely in any practical case. These algorithms are 
not new; they come essentially from Baker and Davenport [1] and Cijsouw, Korlaar, 
and Tijdeman (appendix to Stroeker and Tijdeman [5]). 
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In Subsection 8A we combine the results of Sections 3 and 7 to obtain explicit 
upper bounds for (1.1). In Subsection 8B an algorithm is presented to reduce these 
upper bounds. It is a combination of the algorithms of Sections 4 and 7. We give an 
example in Subsection 8C. Finally, in Section 9 we present an application to a 
certain type of mixed quadratic-exponential diophantine equation. 

6B. Preliminaries. Let in the sequel A < 0. Since a/13 is not a root of unity, 
B > 2. Since (a,,/) and (X, ,t) are pairs of complex conjugates, lal = If I and 
AI = I41. Thus L = logmax(IeD11/4, IaXViI). Lemmas 3.2, 4.2, and 4.3 hold also 
for A < 0. 

As in the case A > 0, we have to exclude the case where only finitely many pi-adic 
digits of 0, are nonzero. Let p = 4(1 + -3). 

LEMMA 6.1. If only finitely many p,-adic digits ui, of 0i are nonzero, then 0, = 0, 
and Gn= ?Rn KS"S KTn or KUn, whereK E Q, and 

Rn = (aln- /n )/(a - P) Sn = an + . An 

Tn =(1 
)On + (1 ? +-)p n 

U = (1 + w)a +( )/9 = p orjp. 

The case Gn= KTn can occur only if d =-1, and Gn = KUn only if d -3. 

Proof. As in the proof of Lemma 4.4, 0, = r E Z, and (13/a)r(M/X) = 7 is a root 
of unity. Then qXar = ,43r hence 

Gn = Xar(an-r + -, fn-r) 

Recall that B = a13 > 2. Notice that 

GoB(71ar-l + fr-l) = Gl(?qa r ? /) 

By (B, G1) = 1, it follows that a13 I a r + fr . By (A, B) = 1, we have (a, ,B)-(1), 
and from aI f3r it then follows that 0, = r = 0. So Go X(1 + -q) X Z. Then X = 
K(1 + ij) for some K E Q. Choose K such that Go. G, E Z and (GoG1) - 1. Now 
the result follows easily, since for q there are only the possibilities + 1, and + -1 
if d =-1, and + p, if d =-3. 0 

In the cases of Lemma 6.1, Eq. (1.1) can be treated as follows. The smallest index 
n = g(mp') such that mp' I Gn grows exponentially with 1. Also Gn grows exponen- 
tially with n (see Theorem 7.2). Hence Gg(mpi) grows double exponentially with 1. It 
follows that wpn' ... p' cannot keep up with Gg(wp l ... P.,). So, if m1, ..., m, are 
large enough, there is a prime q such that q I Gg(wp,, ...pm,,), but q + wpl'*' 

Now the special properties of the sequences Rn, Sn9, T7 and Un can be employed to 
prove that q I Gn whenever wp' ... p2', I Gn. We illustrate this with an example. 

Let A = 5, B = 13, Go = G = 1. Then A = -27, a = 1 + 3p, X = (1 + p)/3. 
We solve Gn = + 2'. The sequence Gn = Xaan + AXan is related to the sequence 
Hn = Xa' + aXn. In fact, we have GnHnRn = R3n/3. Since Rn has nice divisibility 
properties, we thus have information on the prime divisors of Gn and Hn. We find: 

n 0 1 2 3 4 5 6 7 8 

G,7 1 1 -8 -53 -161 - 116 1513 9073 25696 
H,1 1 4 7 -17 -176 - 659 -1007 3532 30751 
R,1 0 1 5 12 -5 -181 - 840 - 1847 1685 
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Now Gn 0 (mod 16) if and only if n 8 (mod 12), Hn 0- (mod 16) if and only if 
n 4 (mod 12), and R n 0 (mod 16) if and only if n 0 (mod 12). Further, 
G4H4R4= R12/3 = -24 5 * 7 11 * 23, and it follows that 24 7 11 23IGnHn 
for all n 0 (mod4). In fact, IIIGn whenever 16IGn. Thus G_= +2m implies 
m < 3. In the next section we show how to solve IGnI < 8. 

Another way to treat (1.1) in the case 0i = 0 is the following. By Lemma 4.2, 
mi < gi + 1 + ordp (n). Hence, 

|Gn I = I w lpn, ... pn, < vo n 

for some constant v0. Only minor changes in the arguments of Section 7 suffice to 
deal with this inequality, instead of IGnI < v. 

7. The Growth of the Recurrence Sequence. 
7A. Application of a Theorem of Waldschmidt. In this subsection we study the 

diophantine inequality 

(7.1) IGn< V 

for a fixed v E l R, v > 1. We apply a result of Waldschmidt [6] from the complex 
Gelfond-Baker theory, which gives an upper bound for n that is particularly good in 
v. See also Kiss [2]. 

Let ao for 4 E Q(VA) be the leading coefficient of its minimal polynomial. We 
define the height of { by 

h (t) = 2 log aO + log max(1, I0I) 

in accordance with Waldschmidt's height function (cf. [6, p. 259]). Let a1,... , an E 

Q(4), b1,..., bn e Z. Put 

A= b1 Logal + +bnLogan, 

where Log denotes the principal value of the complex logarithm, i.e., - 'r < Im Log z 
<T. Assume A 0. Let V1,.V..,n be real numbers with 2 < V, < < Vn and 

Vi > max{h(ai), 'ILogail} (i = 1,...,n). Put W= max1<i,<nlogibil. Define Vi+ = 

max(1, Vi) for i = n - 1, n. Put 

C4 = 29n+53n2nV * ... Vn log(2eJVn-1), Cs = C4log(2eVn )- 

THEOREM 7.1 (WALDSCHMIDT). With the above definitions, 

Al > exp{-(C4W+ C5)). 

We apply this to (7.1) as follows. Let 

E -XAutA, 

U2= max( 7T, log B), U3 - max( ST, log E), 
U2+ = min(U2, U3), U+ = max( U2, U3), 

C4'= 27936U2U3 log(2eU2+), C5' = C4' log(4eU3+ ), 

C6 (log(ir/2I1fI) + C5' + C4 log(4C4/logB)) x 4/logB. 
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THEOREM 7.2. Let v E- R, v > 1. Then all solutions n > 0 of (7.1) satisfy 

n < C6 + loB logmax(v, 21G tLA I). 

Remark. Notice that C6 does not depend on v. 
Proof. By A < 0, both (a, /3) and (A, ,u) are pairs of complex conjugates. Hence 

lal = 1 B1 - B"/2 > 2. We have from (7.1) 

(7.2) |( A1 )( a )_ l < B1 _ 

We may assume n > 2. Let -X/1 = e2ii, a/cl = e2rio , with - 2 < + 2 2 

< + < 2. Let k 0k1 E Z be such that Iij + nk + kjI < 2. Then IkjI < 1 + ?n < n 

(j = 0,1). Put 

AJ = 2riT( j1 + n f + k1) =jLog( ,) + n Log() + 2k Log( - 1) 

for j = 0, 1. It is an easy exercise to show that Ixi < 4Ie2Xix - 11 holds for all x E R 
with IxI < 2. Now, from (7.2) we have an upper bound for IA11: 

IA1l = 2STjl' + no + k11 e - 

2II 
2 |( ,a ) jB ) -I < 

vB 
V-n/2 

It may happen that A1 = 0. In that case, 4 + n.p E Z, hence -(X/L)(a/f)n = 1, 
and it follows that Gn = Aan + Lp3n = 0. Kiss [2] showed that this implies I RnI < 

21GOI, where Rn = (n.-_ fln)/(l - /). From this, Kiss derived an upper bound for 

n. We shall follow his argument, but we apply another, sharper result from the 
Gelfond-Baker theory than Kiss. Notice that, by 1/31 = B'72, 

21|GOI ,I Rn I = n~ 1A -1 >1 'Io n + kOl = ~ I lAO 1 

Now Ao 0 0, since by n > 2 the contrary would imply p E Q, which is impossible, 
since a/fl is not a root of unity. Thus, take j = 1 if A1 = 0, and j = 0 otherwise. 
Then A 0 , and 

(7.3) Ai < 211 max(v,2jGotV4j)B n/2. 

From Theorem 7.1 we can derive a lower bound for lAjl. Notice that 
max(j, n, 21kjl) < 2n, so that W = log(2n). We choose V1 = , . The number a/fl 
satisfies 

Bx2 -(A2 - 2B)x + B = 0, 

hence h (a/f) < 2 log B. And - X/f satisfies 

Ex2 -(2E + AGJ2)x + E = 0, 

hence h( -A/) < 2 log E. Thus V2 = U2+, V3 = U3+ satisfy the requirements for 
Theorem 7.1. We find 

(7.4) Aj I > exp{- C4(log(2n) + log(2eU3+)} 
= exp {-( C4' log n + Cs ) ) 
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Combining (7.3) and (7.4) we find n < a + b log n, where 

a = logB (logmax(v, 21G0,t A ) + log 2'- + 

b = 2C4'/logB. 

The result follows from Lemma 2.2 (Part I), since 

b = 2C4/log B = 27836 max(Tr, log B) max(?r, log E) log(2eU2+), 
log B 

which is certainly larger than e 2. O 

We now want to reduce the bound from Theorem 7.2. We do this by studying the 
diophantine inequality 

(7.5) I+_ + no + kj1 < voB 

where j= j4 and vo = max(v, 2IGoM/AI )/41tl. We have to distinguish between 

4, = 0 (the homogeneous case) and {J 0 0 (the inhomogeneous case). 
7B. The Homogeneous Case. We first study the easier case {J = 0. We have the 

following algorithm. Let N be an upper bound for the solutions of (7.5), for 
example the bound found in Theorem 7.2. 

ALGORITHM B (reduces given upper bound for (7.5) in the case {J = 0). 
Input: o, B, l41 vo, N. 
Output: new, better bound N * for n. 

(i) (initialization) Choose no >, 2/log B such that B nf/2/no0 > 2vo; No:= [N]; 
compute the continuedfraction 

1kt = 0, a,, a2, * * alo+1 ... 

and the denominators q1, .. ., qlo+ 1 of the convergents of I j, with lo so large 
that qlo <No < i:= 0; 

(ii) (compute new bound) A,:= max(al,.. ., a, +,); compute the largest integer 
N,+ 1 such that 

BN,,1/2IN,+, < vo(A, + 2); 

and 1,+ 1 such that ql,+ < N,+ I < q,1l + 1; 
(iii) (terminate loop) 

if n0< N,+ <Ni then i:= i+ 1, goto (ii); 

else N* max(no, Ni+l), stop. 

LEMMA 7.3. Algorithm B terminates. Inequality (7.5) with fj = 0 has no solutions 
with N* < n < N. 

Proof. Termination is trivial, since all N, are integers. Notice that BX/2/x is an 
increasing function for x > 2/log B. Hence, if n > n , 

I - k_, |/n I < voB - I/2n < 1/2 n 

It follows that lkjl/n is a convergent of 1j1, say jk.1/n = pm/qm. Then qm < n, and, 
as is well known, 

| kPI pm/qml > 1/(am?I + 2)qm. 
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Suppose n < Ni for some i > 0. Then m < 1,. Hence, 

Bn/2In < von -21 1 -lkjl/nJ | < vo(am? + 2) < vo(Am + 2). 

It follows that if Ni+ 1 > n 0, then n < Ni +1. 0 
We notice that the above algorithm is similar to those of Cijsouw, Korlaar, and 

Tijdeman (appendix to Stroeker and Tijdeman [5]), and of D. C. Hunt and A. J. van 
der Poorten (unpublished manuscript). 

7C. The Inhomogeneous Case. In the more complicated case fj 0 O, we use a 
technique due to H. Davenport (see Baker and Davenport [1, pp. 133-134]). Again, 
let N be an upper bound for n. 

ALGORITHM C (reduces upper bound for (7.5) in the case fj 0 O). 
Input: p, 4J, B, vo, N. 
Output: new, better upper bound N* for all but a finite number of explicitly 

given n. 
(i) (initialization) No:= [N]; compute the continuedfraction 

1,01 [?, a,, ... ., a,0, . . . I 

and the convergents p./qi (i = 1, ..., lo), with lo so large that qlO > 4No and 
ljq1o0jjj > 2NO/qlo *. (If such lo cannot be found within reasonable time, take 
lo so large that qlO > 4NO); i:= 0; 

(ii) (compute new bound) 
if j1ql1 4jII > 2Ni/ql then Ni + I [2 log(q2vo/Ni)/log B]; 

else compute K E Z with {K - q,Pj1 < 2 

compute nO E Z, 0 < n0 < ql, with 
K + n0 pl 0 (mod q1 ), 
if n = nO is a solution of (7.5), then 

print an appropriate message; 
Ni+ := [2log(4q1 vo)/log B]; 

(iii) (terminate loop) 
if N, 1 < Ni theni:= i + 1; 

compute the minimal li < li1 such that ql > 4Nj and 
ljq14Jl1 > 2NA/ql (If such li does not exist, choose the 
minimal li such that q1, > 4Ni); 

goto (ii); 
else N*:= Ni, stop. 

LEMMA 7.4. Algorithm C terminates. Inequality (7.5) with fj 0 O has for N* < n 
< N only the finitely many solutions found by the algorithm. 

Proof. It is clear that the algorithm terminates. Suppose that n < Ni for some 
i> 0. Then if I1q4 'j II> 2Ni/ql, we have 

IIji11 =|1 ql, (4 + no + kj) - n4q,| 

< qI |j + no + kjI + n/q1 < qvoB -n/2 + N1/q1 . 

* 1 * denotes the distance to the nearest integer. 
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It follows that n < Ni,1. If jjq1'1jjl < 2NAq1, then 

K + np1, + k1qj I < I K - q4,'j I + qj4l | 1+ nok + kj I + nj pl - qi,p| 

< 2 + q1,voB n/2 + Nl/ql, < 3 + q,voB-n2. 

Suppose that qvoB"-n/2 < -. Then K + np,, + kjq, = 0, since it is an integer. By 
(p,, q1) = 1 it follows that n nO (modq, ). Since ql > Ni, n = nO is the only 
possibility. Suppose next that q1 v0B -n/2> >. Then n < NA+1 follows immediately. 
E 

We remark that in practice one almost always finds an li such that 11q1,'j11 > 

2NiA/ql, if N, is large enough. 

8. How to Solve (1.1). 
8A. Bounds for the Solutions. Combining the results from the p-adic and the 

complex Gelfond-Baker theory (Lemma 3.2 and Theorem 7.2), we now derive upper 
bounds for the solutions of (1.1) with A < 0. 

THEOREM 8.1. Put Cl = max I, i S< t (Cl) and P = Pi ... Ptt Further, put 

C7 = max(C6 + logB log(21Go0LFV), 

4 /oglwl 1/ (4C1log P 1 / lO108CIlog P \ 
08jj6 log B + log B log log B 

C8ji = C1 i(log C7)3 (i = 1,. ..,t). 

Then all solutions of (1.1) satisfy 
n <C7, Mi <C8, i = 1 . . t). 

Proof. From Lemma 3.2 and Theorem 7.2 with v = Iwp ... p7m1, we see that 

n < C6 + 1oB log(21GOAF1), 

or 

n < C6 + 
4 
4glgw+ 4C1 log (logn)3 log B log B 

The result now follows from Lemma 2.2 if 4C1log P/logB > (e2/3)3. This is 
certainly true. O 

8B. The Algorithm. We present an algorithm to reduce upper bounds for the 
solutions of Eq. (1.1). The idea is to apply alternatingly algorithms A and one of B 
and C. Let N be an upper bound for n, for example N = C7. 

ALGORITHM D (reduces upper bounds for the solutions of (1.1)). 
Input: a, /,B A, ,u, w, P19'..9 Pt, N. 
Output: new, better bounds N*, Mi for n and ml (i = 1, ..., t). 

(i) (initialization) NO:= [N]; j:= 1; 

gi:- ordp,(X) + ordp (logP,(a/f)) 
(3/2 ifpi=2 1 

hi:= ordp(A)+ 1 if p- 3 
1/2 if p,>5 ) 
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(ii) (computation of the 0,'s, p and 4) 
compute for i = 1, ..., t the first r, pi-adic digits of 

00 

0, = -lg -/)lg aA = E zll 

where r, is so large that p[ > NO and u, r0 ; compute = Log( - X/)/2 ri, 
and the continuedfraction 

>= 1 2 i Log(a/f3) =[0, a,, , alo, ] 

with the convergents p,/q, (i = 1,..., 1s), where lo is so large that q101 < NO 
< qlo if 4 = 0; qlo > 4No and II q,o4 I I> 2No/qlo if 4 0 0 and such lo can be 

found in a reasonable amount of time, qlo > 4No otherwise. 
(iii) (one step of Algorithm A) 

M,,,:= max(h,, g, + mints E Z: s > O and p' > N.-1 and u, * O}) (i= 

(iv) (one step of Algorithm B or C) 
if =0 then A:= max(a I.... ., al -1); v := jwjpm,, .. p M,, ' 

choose no > 2/log B such that B n(/2/n 0 > v/2 I lij; 
compute the largest integer NJ such that BN1/2/N9 

(A + 2)v/4IpI; 
NJ:= max(no, N); 
if NJ < Nj then compute IJ such that 

ql,-1 < NJ < ql; sNj <qI 
j:=j + 1; goto (iii); 

else if llq1_ _4Jj > 2Nj>l/ql 
then NJ: [2 log(q_2 v/4I INJ -)/log B]; 
else compute K E Z with IK - q1l_l <2 

compute nO E Z, 0 < n0 < qll 
with K + n p =_ 0 (mod q1); 
if n = nO is a solution of (1.1) 

then print an appropriate message; 

N,:= [21og(q,, v1jAj)1logB]; 
if N, < N,1 then compute the minimal 1, < lj1 such that 

q, > 4NJ and llq, II> 2Nj/q, (if such I 
does not exist, choose the minimal IJ such that 
q, > 4NJ); 
j:= j + 1; goto (iii); 

(v) (termination) N*:= N,-1; M,:= M,', (i = 1, . . ., t); stop. 

THEOREM 8.2. Algorithm D terminates. Equation (1.1) has no solutions with 
N * < n < N and m, > M, (i = 1, .. ., t), apart from those spotted by the algorithm. 

Proof. Clear, from the proofs of Lemmas 7.3 and 7.4. O 
8C. An Example. Let A =1, B = 2, Go= 2, G1 = 3, then A=-7, a= 

(1 + -7)/2, X = (2 + -)/7 -7. Let w = + 1, Pi = 39 P2 = 7. We have with 
n0 = 2: C1 < 6.40 x 1016, C6 < 9.14 x 1029, C7 < 7.42 x 1030, C8 < 2.30 x 1022. 
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Further, g1 = 1, g2 = 0, h1 = 1, h2 = 0. Let No = 7.42 x 1030. We have 

4 = Log(a//)/2 7i = (7 - arctan(V'i/3))/2T77 

= [0, 2, 1, 1, 2, 16, 6, 1, 2, 2, 13, 
1, 3, 3,1, 1, 2, 1, 2, 1, 1, 
1, 1, 1, 9, 2, 1, 2, 1, 7, 1, 
6, 269, 4, 3, 1, 1, 50, 2, 1, 6, 
1, 1, 2, 1, 1, 7, 1, 61, 1, 12, 
3, 7,4,7, 3,121, 1,21,2, 1,7,...], 

4 = Log(-X/ti)/2Thi = (77 - arctan(4Th/3))/277 

= 0.29396 28336 99645 40267 89566 60520 01908 06203 ... 

l = 0.20010 12210 00011 02102 00211 00222 02220 12021 
10020 20202 21102 00121 01000 01002 11100 20122 
11111 22202 21021 02212 2200..., 

2 = 0.32542 12042 43561 34020 61561 13452 10116 33152 
25336 45044 11254 55033 .... 

Now, Ml= 67, M21 = 37; we choose '0 = 61, since 

q61 = 142 51183 31142 44361 19375 51238 81743 > 4No0 

and 11q614'I = 0.24487 ... > 2N0/q61 = 0.104 .... So we find N1 = 637. Next, M1,2 
= 7, M22 = 4; we choose 11 = 9, since q9 = 10102 > 4 x 637, and 1q94'jj = 
0.38745 ... > 2 x 637/10102. So we find N2 = 74. Next, M13 = 6, M23 = 3; we 
choose 12 = 6, since q6 = 1291 > 4 x 74, and 11q64'I = 0.49398... > 2 x 74/1291. 
So we find N3 = 60. In the next step we find no improvement. Hence n < 60, 

Ml < 6, m2 < 3. It is a matter of straightforward computation to check that there 
are the following 6 solutions of Gn = +3m,7m2: G1 = 3, G2= -1, G3 = -7, 

G5 = 9, G7 = 1, G17 = 441. 

9. A Mixed Quadratic-Exponential Equation. In this section, we give an applica- 
tion of the preceding algorithm to the following diophantine equation. Let 

?(X, Y) = aX2 + bXY + cy2 

be a quadratic form with integral coefficients, such that D = b2 - 4ac < 0. Let q, 
v, w be nonzero integers, and Pi, ..., p, prime numbers. Consider the equation 

(4'(X, Y) = vq n 

(9.1) Y=wp7M ... p, 
Y=p 1 ***Pmt 

in integers X, n >0 , m, > 0 (i = I . I t). 
Let /3, /3 be the roots of ?(x, 1). Let h be the class number of Q(VD). There 

exists a -r E 0 (D) such that we have the principal ideal equation (77) (77) = (qh). 

Put n = n1 + hn2, with 0 < n1 < h. Then F(X, Y) = vq'1 is equivalent to finitely 
many ideal equations 

(aX- a/3Y)(aX- a/3Y) = 7T 
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with (a) (6a) = (avq fl ). Hence we have the equations (in algebraic numbers) 

aX - afY = y72 (aX - af3Y= y=7f2, 

#a-/Y = yXn2 pyX a3= yq,7n2' a- af3 7 X- af3 

where -y is composed of units, common divisors of aX - af3Y, aX - af3Y, and a. 

Notice that there are only finitely many choices for }y possible. Thus, (9.1) is 
equivalent to a finite number of equations 

a (/3 ,B wpml. .. pm, = y,7 n2 _ -7n2 

or, if we put =y/a(3 -/3) and Gn2 =7n2 + n2, 

(9.2) G2= wpM ... pmt 

Here { Gn2 } is a recurrence sequence with negative discriminant. So (9.2) is of 
type (1.1), and it can thus be solved by the method presented in Sections 7 and 8. 

Before giving an example, we remark that Eq. (9.1) with D > 0 is not solvable 
with our method. This is due to the fact that in Q(V15) with D > 0 there are 
infinitely many units, hence infinitely many possibilities for y. Another generaliza- 
tion of Eq. (9.1) is to replace qfn by q11n ... qn,s. This problem is also not solvable by 
our method, since it does not lead to a binary recurrence sequence if s > 2. It seems 
that these problems can be solved by using multi-dimensional approximation 
techniques. This is the subject of further investigations by the author. 

We finally present an example. 

THEOREM 9.1. The equation 

X2 - 3ml7M2X + 2(3ml7m2)2 = 11 2 

in integers X, n > O, m1 > 0, M2 > 0 has only the following solutions: 

n m, m2 X n m, m2 X 

1 1 0 -1, 4 5 2 0 -10, 19 
1 0 0 -4, 5 6 0 0 -26, 27 
2 0 0 -6, 7 7 0 0 -37, 38 
3 0 1 2, 5 7 3 0 2, 25 
3 1 0 - 7, 10 11 1 1 - 137, 158 
4 0 1 -6, 13 17 2 2 - 829, 1270 

Sketch of Proof. Put /3 = (1 + -7)72. Then 

x2 XY + 2y2 = (X - ,BY)(x - #Y) 

Notice that Q( -7) has class number 1, and that 

2 = (1 + -7)/2 x(1 - -7)2, 11 = (2 + -7)(2 - -). 

Suppose yIX- flY and yIX- -lY. Then yI(f )Y= - 73m7m21 On the 
other hand, yIll 2 . It follows that y = +1; hence X- flY and X- ,BY are 

coprime. Thus we have two possibilities: 

X- fY = + (2? + \7)( 
I 

) 

X- ,Y = (2F + 7)( ?7) 
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in each equation the 2nd and 3rd + being independent. Hence, we have to solve 

(9.3) G(i)= X(J), n + X(J), n = 3m17m2 (j = 1, 2), 

with G(W)1 = G(J) -2Gn($1 (j= 1,2) and X(1) = X(2) = (2 + -7 )/ -7, so that 
G(1)= = 1, G(1) = 3, G(2) = -1. Notice that AI(1) - -9a(2) (i -1, 2), and 4(1)= 

- 4(2). For j = 1 we solved (9.3) in the example of Subsection 8C. We leave it to the 
reader to solve (9.3) for j = 2; this can be done with the numerical data given in 
Subsection 8C. O 
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